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C L I M A T O L O G Y

Verification of extreme event attribution: Using  
out-of-sample observations to assess changes 
in probabilities of unprecedented events
Noah S. Diffenbaugh1,2*

Independent verification of anthropogenic influence on specific extreme climate events remains elusive. This study 
presents a framework for such verification. This framework reveals that previously published results based on a 
1961–2005 attribution period frequently underestimate the influence of global warming on the probability of 
unprecedented extremes during the 2006–2017 period. This underestimation is particularly pronounced for hot 
and wet events, with greater uncertainty for dry events. The underestimation is reflected in discrepancies be-
tween probabilities predicted during the attribution period and frequencies observed during the out-of-sample 
verification period. These discrepancies are most explained by increases in climate forcing between the attribution 
and verification periods, suggesting that 21st-century global warming has substantially increased the probability of 
unprecedented hot and wet events. Hence, the use of temporally lagged periods for attribution—and, more broadly, 
for extreme event probability quantification—can cause underestimation of historical impacts, and current and 
future risks.

INTRODUCTION
The field of extreme event attribution has burgeoned since the semi­
nal work of Stott et al. (1). In that time, numerous event attribution 
frameworks have been developed (2). Although there is heterogene­
ity in the design of these frameworks, most use a combination of in­
strumental observations and climate model simulations to quantify 
the influence of historical anthropogenic climate forcing on the prob­
ability and/or severity of individual events. The purpose of this study 
is to examine whether independent “out-of-sample” observations can 
be used to assess the accuracy of changes in extreme event return 
intervals that are either explicitly or implicitly predicted by attribu­
tion frameworks.

Since Stott et al. (1), attribution analyses have been published for 
many types of events (2), including heatwaves [e.g., (3–8)], cold snaps 
[e.g., (3, 5, 9)], heavy rainfall [e.g., (3–6, 10)], floods [e.g., (11)], 
droughts [e.g., (12)], tropical cyclone precipitation [e.g., (13, 14)], 
storm surge flooding [e.g., (15)], and extremely low Arctic sea ice 
[e.g., (4, 16)]. In addition, event attribution frameworks have been 
applied to the underlying physical causes of extremes (2, 17, 18), in­
cluding atmospheric circulation patterns [e.g., (4, 19–22)], atmo­
spheric water vapor (4), ocean heat content (23), and wildfire risk 
factors [e.g., (24)]. In recent years, attribution analyses have been 
applied increasingly quickly following an event [e.g., (10, 25)], with 
some techniques using forecasts generated before the event [e.g., 
(26, 27)]. “Precomputed” approaches (7) have likewise been used to 
quantify the influence of global warming on a particular type of event 
at each area of the globe, using observational data (4, 28), climate 
model simulations (6, 7), or a combination of the two (4, 5).

Independent verification of event attribution poses a particular 
challenge. In addition to the reliability of observational data and cli­
mate model simulations [e.g., (29, 30)], there are fundamental ques­
tions about the appropriate scientific framing through which causation 

can be measured [e.g., (2, 31–34)]. One inherent challenge is that sin­
gle event attribution is conducted for conditions at one specific place 
and time; the event only occurs once, and by construction, the attri­
bution quantification pertains only to that event. Further, because 
extreme events are by definition rare, the available population of 
events with which to independently verify attribution results is lim­
ited, a challenge that is exacerbated for events that are unprecedented 
in the observational record.

One approach to resolving these challenges is to frame the attri­
bution result as a falsifiable prediction, and then test that prediction 
using independent observations. Such an approach draws on the many 
aspects of climate and weather research that routinely use indepen­
dent verification. For example, daily- and seasonal-scale forecasts are 
verified after the forecast period has passed [e.g., (35)]. This forecast 
verification includes daily fields such as temperature, precipita­
tion, and winds, as well as extreme event phenomena such as tropical 
cyclones, severe thunderstorms, and river and storm surge flooding. 
Further, scientists have been making long-term climate projections 
for decades (36, 37). Older projections can be verified using current 
observations [e.g., (38)], and such comparisons are now made for 
global temperature anomalies in quasi-real time.

It is important to emphasize the distinction between verification 
of falsifiable predictions and evaluation of methodological uncer­
tainty. Researchers have for years taken great care to thoroughly eval­
uate various aspects of uncertainty within climate attribution systems 
(2). This includes (i) assessing the robustness of the observational re­
cord and the fidelity of climate model simulations for different types 
of events [e.g., (2–4, 30)]; (ii) quantifying uncertainty in the climate 
model simulations, including the sensitivity to historical emissions 
(4), the ability to simulate the statistical properties of the historical 
observations [e.g., (4, 21, 39, 40)], and the ability to simulate the under­
lying physical processes that cause different types of events [e.g., 
(21, 41)]; (iii) quantifying uncertainty in the statistical analysis, 
including the appropriateness of the underlying statistical assump­
tions (4, 42–45); and (iv) applying different attribution method­
ologies to the same event (4, 16, 46, 47), including systematic 
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reanalysis of multiple published results (3, 33). However, despite 
this emphasis on uncertainty quantification, independent observa­
tional verification of specific, quantitative attribution results re­
mains elusive.

Central to the analysis presented in this study is the idea that attri­
bution results that are generated from estimates of return intervals 
in previous historical time periods can be verified using the frequency 
of extreme events that occur over large geographic domains during 
subsequent, multi-year, out-of-sample time periods (see Materials 
and Methods). For example, many attribution analyses have used 
global climate model simulations from the Coupled Model Inter­
comparison Project (CMIP5) [e.g., (4–8, 20, 38)]. Because the CMIP5 
Historical and Natural simulations were only run through 2005 (48, 49), 
simulations using the actual climate forcings do not cover the most 
recent period of observations. Attribution analyses that use CMIP5 
can thus either restrict the historical analyses to this pre-2006 period 
[e.g., (4–6, 12, 20)] or use the early period of the CMIP5 future pro­
jections to extend the historical simulations (in which case the an­
thropogenic and non-anthropogenic simulations cover different time 
periods) [e.g., (8, 38)]. In the case of previously published global attri­
bution analyses, which used the CMIP5 Historical and Natural 
simulations to quantify the influence of historical forcing on the 
probability of unprecedented hot, wet, and dry extremes at each 
area of the globe, the attribution analysis was limited to the pre-2006 
period (5). However, this limitation also presents an opportunity, 
because the frequency of record-setting events during 2006–2017 
can now be used to independently verify the published results 
that used data from 1961 to 2005.

Previous global attribution analyses (4) examined four different 
attribution metrics: (i) the contribution of the observed trend to 
the event magnitude, (ii) the contribution of the observed trend to the 
event probability, (iii) the probability of the observed trend in the 
historical forcing, and (iv) the contribution of the historical forcing 
to the event probability. This work was recently extended (5), using 
CMIP5 data to quantify the fourth metric for natural and anthropo­
genic forcing during the historical period, and for future levels of 
forcing consistent with the United Nations Paris Agreement goals 
and commitments.

The current study focuses on verifying the second and fourth 
metrics using out-of-sample observations. The contribution of his­
torical climate change to the event probability is measured using an 
“attribution ratio” (AR), which is calculated as the ratio between the 
return interval in a counterfactual world without climate change and 
the return interval in the actual observed world with climate change 
(4, 5). For the contribution of the observed trend to the event prob­
ability, observational data are used to estimate the return intervals of 
extreme events, with the attribution ratio (ARObs-dt) calculated from 
the return interval in the actual time series (RIObs) and the return 
interval in the detrended time series (RIObs-dt)

	​​ AR​ Obs‐dt​​ = (​RI​ Obs‐dt​​ ) ÷ (​RI​ Obs​​)​	

For the contribution of the historical forcing to the event probability, 
observational data are used to correct systematic biases in the climate 
model simulations, which are then used to estimate the change in return 
intervals under historical (HIST) and natural (NAT) climate forcing

	​​ AR​ Forcing​​  =  (​RI​ Obs‐dt​​ ) ÷ (​RI​ (HIST–NAT) + Obs‐dt​​)​	

An attribution ratio of 1 indicates equal probability with and with­
out global warming. Because return intervals are the inverse of event 
probabilities, larger ratios indicate greater influence of global warm­
ing (e.g., a ratio of 2 indicates that the probability of an event is twice 
as large with global warming). Block bootstrapping of the time series 
at each location is used to quantify a distribution describing the un­
certainty in the event probabilities at each location (4, 5).

The present study is focused on two objectives. The first phase of 
the analysis uses specific, previously published predictions to demon­
strate the framework for verifying extreme event attribution results. 
Independent data (i.e., observations over the 2006–2017 time period) 
are used to derive the return intervals of unprecedented events over 
different regions, based on the regional frequency of record-setting 
events. These out-of-sample return intervals are then compared with 
the regional-mean distributions of return intervals (e.g., 5th, 25th, 
50th, 75th, and 95th percentiles) that were predicted from the de­
trended 1961–2005 observational data at each grid point in the region. 
The ratio is referred to as a “verification ratio” (VR)

	​​ VR​ Obs:2006−2017​​  = ​ RI​ Obs‐dt:1961−2005​​ ÷ ​RI​ Obs:2006−2017​​​	

where RIObs-dt:1961–2005 is the regional-mean of the return intervals 
in the detrended 1961–2005 time series at each grid point, and 
RIObs:2006–2017 is the regional-mean return interval implied by the 
frequency of record-setting events in the region during the out-of-
sample 2006–2017 verification period. These verification ratios are 
compared with attribution ratios that quantify the contribution of 
historical climate change during the 1961–2005 attribution period, 
calculated from both the observational record (ARObs-dt) and the 
CMIP5 global climate model ensemble (ARForcing). Thus, by construc­
tion, the out-of-sample comparison tests the stability of the attribu­
tion results over time, within the context of a nonstationary climate.

The second phase of the analysis attempts to understand discrep­
ancies between the verification and attribution ratios. This analysis 
tests whether any such discrepancies are due to structural mismatches 
between the attribution and verification methods. It also tests whether 
there have been changes in the frequency of record-setting events 
between the attribution and verification periods, and whether any 
changes are due primarily to external climate forcing or to internal 
climate variability. Understanding discrepancies in the predicted prob­
abilities of record-setting events and the actual out-of-sample occur­
rence is important not only for verifying extreme event attribution 
but also for evaluating the durability of design and planning guidelines 
that use similar return interval quantification when conducting risk 
analysis (such as for infrastructure design, land use planning, and 
disaster management).

In principle, this verification framework could be applied to any 
type of extreme event. The focus of this initial application is on events 
that are unprecedented in the baseline historical period (1961–2005). 
Unprecedented events pose important challenges for event attribu­
tion (4). First, statistical uncertainty increases as values reach fur­
ther into the tails of the distribution. Events that fall outside of the 
historical range are, by definition, in the extreme tail, amplifying the 
challenges posed by small samples. Second, climate change is increas­
ing the probability of unprecedented events (4). Quantifying the ef­
fects of this nonstationarity is a general challenge for risk assessment 
[e.g., (50, 51)] and poses specific challenges for event attribution (4). 
Third, climate models are the only available tool for systematically 
testing the influence of global warming on the physical processes that 
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shape extremes, making climate models a necessary component of 
event attribution frameworks (2). However, because historically un­
precedented events often arise from rare combinations of physical 
ingredients, they generally pose the greatest challenge for accurate 
climate model simulation (2, 17, 18, 30).

Despite these potential barriers, events that fall outside of the 
historical experience are critical for a suite of design and manage­
ment decisions [e.g., (50, 52–54)], as well as climate change mitiga­
tion and adaptation considerations [e.g., (4, 5, 54, 55)]. Given both 
the societal relevance and methodological challenges, this initial ver­
ification study focuses on the attribution of events that are unprece­
dented in the historical observations.

RESULTS
The regional verification ratios for 2006–2017 frequently exceed 
the published attribution ratios calculated from the 1961–2005 data 
(Fig. 1), suggesting that the attribution framework underestimates 
the influence of historical global warming. For example, for the in­
fluence of anthropogenic forcing, the median attribution ratio is less 
than 2.0 for all three extreme indices (hottest days, wettest days, and 
longest dry spell) over the United States, Europe, and East Asia. In 
contrast, the median verification ratio for the hottest days exceeds 4.0 
over Europe and 2.5 over East Asia, with >95% of the verification 
ratio distribution exceeding the median attribution ratio. Likewise, 
the median verification ratio for the wettest days exceeds 3.0 over 
the United States and Europe, with >95% of the verification ratio dis­
tribution again exceeding the median attribution ratio.

Although the trend-based attribution ratio is generally larger than 
the forcing-based attribution ratio (Fig. 1), the verification ratio for 
2006–2017 still frequently exceeds the trend-based attribution ratio 
(Fig. 1). For example, for the hottest days, >95% of the verification 
ratio distribution exceeds the median trend-based attribution ratio 
over Europe, and ~75% exceeds the median trend-based attribution 
ratio over East Asia. Similarly, for the wettest days, >95% of the ver­
ification ratio distribution exceeds the median trend-based attribu­
tion ratio over the United States and Europe.

In a number of cases, the median values of both the attribution 
and verification ratios are close to 1.0 (Fig. 1). For the hottest days, 
both the forcing- and trend-based attribution ratios exhibit median 
values just above 1.0 over the United States, while the median veri­
fication ratio is just below 1.0. Likewise, for the longest dry spells, 
the attribution and verification ratios are near 1.0 over the United 
States, Europe, and East Asia. In these cases, the range of values is 
larger for the attribution ratios than for the verification ratios, in­
cluding greater likelihood of large increases in extreme event prob­
ability. However, the attribution and verification distributions largely 
overlap.

The discrepancies between the attribution and verification ratios 
for record-setting events (Fig. 1) are reflected in discrepancies be­
tween the probabilities predicted from the 1961–2005 observations and 
the frequencies observed in 2006–2017. For example, the 2006–2017 
frequency of record-setting hottest days exceeds the 99th percentile 
of predicted probabilities over both Europe and East Asia (Fig. 2). 
Similarly, the 2006–2017 frequency of record-setting wettest days 
exceeds the 99th percentile of predicted probabilities over both the 
United States and Europe (Fig. 3). Further, in cases where the discrep­
ancies between the verification and attribution ratios are less pro­
nounced, such as the hottest days over the United States and wettest 
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Fig. 1. Verification of the anthropogenic influence on unprecedented hot, wet, 
and dry events. The verification framework is based on the probability, during the 
out-of-sample verification period (2006–2017), of exceeding the most extreme value 
found in the period for which the attribution metrics were calculated (1961–2005). 
The framework is used to verify the attribution metrics published in (4) and (5), for 
(A) hottest day of the year (TXx), (B) percentage of annual precipitation falling in 
days that are wetter than the 95th percentile of the 1961–1990 period (R95p), and 
(C) longest consecutive dry spell of the year (CDD). Maps show the median attribu-
tion ratio calculated from the 1961–2005 trend at each northern hemisphere grid 
point for which there are continuous data in the CLIMDEX dataset (see Materials 
and Methods). The blue distribution shows the uncertainty in the attribution ratio 
calculated from the 1961–2005 trend (i.e., the metric shown in the map) over the 
United States, Europe, and East Asia. The purple distribution shows the uncertainty 
in the regional attribution ratio calculated from anthropogenic climate forcing. 
The red distribution shows the uncertainty in the regional verification ratio calcu-
lated from the 2006–2017 observations. Uncertainty in each ratio is depicted by the 
5th, 25th, 50th, 75th, and 95th percentile values of the bootstrapping described 
in (4) and (5).
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days over East Asia (Fig. 1), the 2006–2017 frequency still falls in the 
tail of predicted probabilities (Figs. 2 and 3).

There are at least two possible explanations for these discrep­
ancies between the probabilities predicted during the attribution 
period (1961–2005) and the frequencies observed during the veri­
fication period (2006–2017). The first possibility is a structural dis­
crepancy in the comparison, such as if the regional-mean of the 
probabilities calculated from the 1961–2005 grid-point time series 
did not accurately predict the regional frequencies during an over­
lapping time period. A second possibility is that there have been 
changes in the probabilities of record-setting events between the at­
tribution and verification periods.

The results favor the second possibility. For example, the actual 
regional frequencies that occurred during the Intergovernmental Panel 
on Climate Change (IPCC’s) baseline period (1986–2005) all fall 
within the 5th to 95th percentile uncertainty range predicted from 
the 1961–2005 observations, and the majority fall within the 25th to 
75th percentile uncertainty range (Figs. 2 to 4). Further, the CMIP5 
climate model ensemble, which is an independent dataset with which 
to predict the frequency of record-setting events at a given level of 
climate forcing, exhibits close overlap with the predicted probabilities 
and the observed 1986–2005 regional frequencies (Figs. 2 to 4). Even 
in the cases where the 1986–2005 CMIP5 ensemble spread is furthest 
from the median of the predicted probabilities (such as the longest 
dry spells over the United States, Europe, and East Asia), the ensemble 
range still falls within the distribution of predicted probabilities 
(Fig. 4). The fact that the observed and simulated 1986–2005 fre­
quencies fall well within the distributions of probabilities predicted 
from the 1961–2005 observations (Figs. 2 to 4) suggests that discrep­
ancies between the attribution and verification ratios (Fig. 1) are not 
caused by structural discrepancies between the underlying metrics.

In contrast, there are substantial differences in the observed fre­
quency of record-setting events between 1986–2005 and 2006–2017. For 
example, the observed frequency is at least ~50% higher in 2006–2017 
for hottest days over Europe and East Asia (Fig. 2), wettest days over 
the United States and Europe (Fig. 3), and longest dry spells over East 
Asia (Fig. 4). Likewise, with the exception of the longest dry spells 
over the United States and East Asia (Fig. 4), the frequency observed 
during 2006–2017 falls further from the median predicted probabil­
ity, while the frequency observed during 1986–2005 falls closer to the 
median (Figs. 2 to 4). These comparisons quantify a substantial in­
crease in the risk of unprecedented events between the attribution and 
verification periods, particularly for hot and wet events.
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Fig. 2. Observed and simulated regional extreme event frequencies for the 
hottest day of the year (TXx). (A) The map shows the difference in the mean value 
between the out-of-sample verification period (2006–2017) and the period for which 
the attribution metrics were calculated (1961–2005). (B) The red line shows, for 
each year of the 2006–2017 verification period, the observed northern hemisphere 
frequency of events in which the grid-point value exceeded the maximum grid-
point value during the period for which the attribution metrics were calculated 
(1961–2005). The blue distribution shows the uncertainty in the hemispheric mean 
probability of exceeding the most extreme value found in the period for which the 
attribution metrics were calculated (1961–2005). The probability of the record-setting 
event is calculated by fitting an extreme value distribution to the 1961–2005 time 
series at each grid point, as described in (4); uncertainty is depicted by the percen-
tile values of the bootstrapping described in (4). The blue circles show the regional 
frequency simulated by the CMIP5 climate model ensemble during the IPCC’s 
baseline period (1986–2005). The red circles show the regional frequency simulated 
by the CMIP5 climate model ensemble during the verification period (2006–2017). 
(C) The blue distribution shows the uncertainty in the regional-mean probability of 
exceeding the most extreme value found in the period for which the attribution 
metrics were calculated (1961–2005). The blue horizontal line shows the observed 
regional frequency during the IPCC’s baseline period (1986–2005); blue circles 
show the regional frequency simulated by the CMIP5 climate model ensemble during 
the IPCC’s baseline period. The red horizontal line shows the observed regional 
frequency during the out-of-sample verification period (2006–2017); red circles show 
the regional frequency simulated by the CMIP5 climate model ensemble during 
the verification period.
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Fig. 3. Observed and simulated regional extreme event frequencies for the 
wettest days. As in Fig. 2, but for the percentage of annual precipitation falling in 
days that are wetter than the 95th percentile of the 1961–1990 baseline period (R95p).
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One concern about this analysis is that the verification period 
is relatively short (12 years) compared to a standard climatological 
baseline period (nominally 30 years). To test the robustness of the 
results to a longer period, the verification period can be extended to 
include the period from the beginning of the IPCC baseline (1986) to 
the end of the out-of-sample verification period (2017). As would be 
expected, mixing the out-of-sample verification period (2006–2017) 
with the end of the attribution period (1961–2005) to form an ex­
tended verification period (1986–2017) yields verification results that 
generally fall between the original attribution results and the out-of-
sample verification results (tables S1 to S3). However, in a number of 
cases, the verification results for this modified period still exceed the 
original attribution results, including hot events over Europe (table S1) 
and wet events over the United States and Europe (table S3).

By generating multiple realizations of the climate system within 
a given level of forcing, the CMIP5 simulations can also provide an 
independent evaluation of whether the change in frequency of record-
setting events is due primarily to climate variability, or has instead 
been influenced by the increase in climate forcing between the attri­
bution and verification periods. For the hottest days over Europe and 
East Asia (Fig. 2) and the wettest days over the United States, Europe, 
and East Asia (Fig. 3), both the observations and the CMIP5 ensemble 
exhibit higher probability of record-breaking events in 2006–2017 
than in 1986–2005. Likewise, for the hottest days over Europe and 
East Asia (Fig. 2), wettest days over the United States, Europe, and East 
Asia (Fig. 3), and longest dry spells over the United States and East 
Asia (Fig. 4), the frequency of record-breaking events observed in 
2006–2017 has a higher likelihood of occurring in 2006–2017 of 
CMIP5 than in 1986–2005 of CMIP5. These patterns are also true 
at the scale of the northern hemisphere for both the hottest and 
wettest days, where the CMIP5 ensemble exhibits higher frequency 

of record-setting events in 2006–2017 than in 1986–2005, and the 
observed 2006–2017 frequencies have a higher likelihood of occur­
ring in 2006–2017 of CMIP5 than in 1986–2005 of CMIP5 (Figs. 2 
and 3). The fact that the frequency of record-setting hot and wet 
events observed during the 2006–2017 verification period generally 
falls within the CMIP5 ensemble spread for 2006–2017 and generally 
outside the CMIP5 ensemble spread for 1986–2005 suggests that the 
observed increase in occurrence was likely influenced by the increase 
in forcing between the attribution and verification periods.

In contrast, the verification of record-setting longest dry spells 
suggests that, at both the regional and hemispheric scales, global 
warming has not had a clear influence on the probability of record-
setting events. This lack of attribution was already suggested by the 
high fraction of attribution ratios near 1.0 (Fig. 1) (5). The fact that 
the verification ratios are also clustered near 1.0 (Fig. 1) strengthens 
that conclusion. Further, the close overlap between the observed and 
simulated frequencies for 1986–2005 and 2006–2017 (Fig. 4) sug­
gests that, in contrast to hot and wet events (Figs. 2 and 3), the re­
cent increase in climate forcing has not altered the probability of 
record-setting longest dry spells over the analysis regions. However, 
it is important to note that other areas of the globe may have expe­
rienced verifiable increases in the probability and/or intensity of dry 
spells [e.g., (4)].

DISCUSSION
The fact that the verification framework reveals the published global 
attribution results to be overly conservative for hot and wet events 
carries a number of implications. For example, those attribution re­
sults suggested that global warming had already influenced the mag­
nitude and probability of unprecedented events at large fractions of 
the globe, including >80% for hot events and >50% for wet events (4). 
This includes 71% of North America, 77% of Europe, and 56% of 
East Asia for the record hottest day of the year, and 80% of North 
America, 89% of Europe, and 70% of East Asia for the record per­
centage of annual precipitation falling in the wettest days (5)). The 
verification results presented here suggest that the influence of global 
warming on these events has been even more pervasive than suggested 
by those original attribution results.

Likewise, because many of the impacts of global warming are felt 
through extremes (54), attribution of the influence of global warm­
ing on record-setting events is highly relevant for quantifying the 
impacts of historical anthropogenic climate forcing on natural and 
human systems. In revealing previously published attribution results 
to be largely conservative, the verification results suggest that the im­
pacts of global warming have been even larger than originally implied 
(4, 5). Further, attribution quantification is now being used to assign 
specific responsibility for the damages resulting from individual events 
(55). The results presented here highlight the importance of inde­
pendent verification of the attribution frameworks that are used to 
assign responsibility for damages.

The underestimation of the probability of record hot and wet 
events during the verification period implies a rapid intensification 
of extreme event probability—and therefore risk—resulting from 
relatively small increases in climate forcing. This intensification has 
important implications both for extreme event attribution and for ac­
curately quantifying probabilities of extreme values in the current and 
near-term climate. Although the calculation of record-setting proba­
bilities attempts to account for nonstationarity in the observational 
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time series (4), the verification results suggest that even one to two 
additional decades of global-scale climate forcing can lead to substan­
tial underestimation of the probability of record-setting hot and wet 
events (Figs. 2 and 3).

The fact that the observed and simulated frequencies of record-
setting events exhibit such large nonstationarities between the base­
line period (ending in 2005) and the verification period (2006–2017) 
suggests that extreme event attribution assessments—as well as other 
risk assessments—should take particular care to use techniques that 
capture conditions in the current time period. Researchers have used 
a number of approaches to extend the period of the attribution anal­
ysis. For metrics that rely only on observational data, researchers 
have used the period of available data at the time of the event [e.g., 
(4, 10, 28, 46)]. Other researchers have calculated statistical relation­
ships between the event probability and the global mean tempera­
ture (10, 13, 14). For metrics that rely on climate model simulations 
(including coordinated archived experiments such as CMIP5), re­
searchers have used climate model projections to extend the period 
of analysis up to the time of the event [e.g., (38)] or to generate at­
tribution results for different levels of global warming (including 
projected future levels) [e.g., (5, 6, 8, 13)]. For the attribution results 
evaluated here, the original study (5) included projections of return 
interval ratios for 2016–2035 and 2036–2055 in the CMIP5 RCP8.5 
experiment, enabling comparisons with 1° to 2°C and 2° to 3°C of 
global warming.

Extending probability predictions under higher levels of global 
warming has been less common in other applications that rely on 
extreme event probability quantification, such as infrastructure de­
sign and risk assessment [e.g., (52)]. The verification results suggest 
that those applications could benefit from such approaches, partic­
ularly given that those planning decisions are more explicitly future-
oriented than attribution analysis. For example, the underprediction 
of occurrence of record-setting events during the out-of-sample ver­
ification period provides evidence in support of dynamic design guide­
lines that can be updated as new observational data become available 
[e.g., (50, 52–54)]. Likewise, the fact that the CMIP5 projections for 
2006–2017 most accurately capture the actual 2006–2017 frequency 
of record-setting hot and wet events (Figs. 2 and 3) suggests that 
ensemble climate model projections could be used to improve prob­
ability quantification for applications that have traditionally relied 
solely on historical observations.

In addition to capturing the response of extreme events to in­
creasing climate forcing, ensemble climate model projections can 
also help to quantify the influence of variability on future extreme 
event probabilities. For example, the 1961–2005 attribution metrics 
suggest >50% likelihood that global warming has increased the prob­
ability of record-setting hottest days over the United States (Fig. 1). 
Further, comparison of the CMIP5 simulations for 2006–2017 and 
1986–2005 predicts very high likelihood of a substantial increase in 
the frequency of record-setting hot events in the later period (Fig. 2). 
However, 75% of the verification ratio distribution is less than 1.0 
over the United States (Fig. 1), driven by a 2006–2017 frequency that 
is in the lowest quartile predicted from the 1961–2005 observations 
(Fig. 2).

This relatively low frequency of record-setting hottest days over 
the United States is consistent with the well-documented “warming 
hole,” a pattern of reduced warming over the central and southeastern 
United States that has been attributed alternatively to atmosphere-
soil moisture feedbacks (56), the aerosol-indirect effect (57), and 

internal ocean-atmosphere variability (58). Although high levels of 
global warming are projected to cause substantial warming through­
out North America, the lower rates of warming associated with the 
warming hole are projected to persist over the near-term decades, with 
relatively high summer temperature variability over the central and 
southeastern United States persisting throughout the 21st century 
(59). Although there is some indication that the mechanisms caus­
ing the warming hole may have reversed early in the 21st century 
(58), the pattern of reduced warming over the central and south­
eastern United States is present in the mean hottest day of the year 
for 2006–2017 relative to 1961–2005 (including negative anomalies 
over the central United States; Fig. 2). Notably, although the observed 
frequency of record-setting hottest days is lower over the United 
States in 2006–2017 compared to 1986–2005 (Fig. 2), the 2006–2017 
frequency does overlap with the lowest CMIP5 value, highlighting 
the importance of climate variability within the context of increas­
ing forcing.

CONCLUSIONS
The motivation for this study is to introduce and demonstrate a 
framework for independent verification of extreme event attribution 
results. The field of extreme event attribution has expanded rapidly 
in the past two decades. Results are now the subject of frequent pub­
lic interest (2). This interest has extended into various public decision-
making processes, both as motivation for incorporating climate 
change into decisions [e.g., (52)] and as a basis for assigning respon­
sibility for damages (55). The use of attribution results raises the 
burden for scientists to independently verify those results, particu­
larly for events that are unprecedented in the historical experience 
(and therefore pose the most acute risks).

Numerous methods for event attribution have been developed (2). 
Although different dimensions of methodological uncertainty have 
been thoroughly evaluated, and in some cases the results of differ­
ent methods have been systematically intercompared, extreme event 
attribution results have not yet been independently verified within 
a framework of scientific falsifiability. To fulfill that need, this study 
presents a framework for using the attribution calculation to create 
falsifiable predictions of the frequency of record-setting events and 
then uses out-of-sample observations to test those predictions. As 
an initial proof of concept, the verification framework is applied to 
previously published attribution results for record-setting hot, wet, 
and dry events at different areas of the globe (4, 5).

Independent verification suggests that those published attribu­
tion results frequently underestimate the influence of global warm­
ing on the probability of unprecedented hot and wet extremes, with 
greater uncertainty for dry extremes. The discrepancy between the 
attribution and verification ratios can be most explained by the in­
crease in climate forcing since the end of the period in which the 
attribution ratios were generated. This is particularly true for hot 
events and wet events, for which the discrepancies between the attri­
bution and verification ratios are greatest. Overall, the verification 
results suggest not only that historical global warming has increased 
the probability of unprecedented hot and wet events over the northern 
hemisphere but also that the magnitude of this effect has increased 
during the 21st century.

Although this study focuses on record-setting hot, wet, and dry 
events over land areas of the northern hemisphere, the verification 
framework could also be applied to a suite of other extreme climate 
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variables [e.g., (49)] and physical ingredients [e.g., (4)], with differ­
ent data sources providing coverage for different areas of the globe. 
Further development and application of this and other frameworks 
will provide a more comprehensive verification of the magnitude of 
anthropogenic influence on different types of extreme events in dif­
ferent regions of the world.

The verification of previously published results from one attribu­
tion method does offer some generalizable lessons. The first is that 
although many attribution analyses have leveraged the unique in­
sights available from multi-institution climate model archives such 
as CMIP5 [e.g., (4–8, 20, 38)], such “ensembles of opportunity” also 
present limitations. For example, because the coordinated experi­
ments require multiple years to plan and run, the simulations that 
use historical forcings do not extend to the present at the time that 
a new event occurs (48). This means that analyses must either cover 
historical periods that do not extend to the present [e.g., (4–6, 12, 20)] 
(which, as this study shows, results in an underestimation of the in­
fluence of global warming on hot and wet events) or use approaches 
to extend the calculation past the period of the historical simula­
tions [e.g., (8, 10, 14, 38)]. The commonly implemented approach 
of using the early period of climate model projections to extend the 
calculation still presents limitations, both because researchers must 
compare the extended simulations with counterfactual simulations 
that do not reach up to the present [e.g., (8, 38)] and because the 
early period of the climate model projections does not include the 
actual forcings that occurred, which can hamper accurate attri­
bution (60).

Another generalizable conclusion is that although precomputed 
approaches remove bias in the selection of events that are studied 
and enable unified analysis of multiple types of events across multi­
ple regions of the world, the fact that the precalculation necessarily 
limits the analysis to an earlier baseline period likely leads to an 
underestimation of current probabilities. As a result, other precom­
puted calculations [e.g., (6, 7)] are likely also subject to a similar 
underestimation of the influence of historical forcing on the proba­
bility of events in the current climate. The verification results pre­
sented in this study highlight the importance for precomputed event 
attribution analyses to include calculations for higher levels of forc­
ing [e.g., (5, 6, 8)] and to update the precomputed results as new 
observations become available. These results also suggest that “rapid” 
attribution approaches [which produce analyses soon after a specific 
event has occurred; e.g., (10, 14, 25)] should likewise continue to 
use methods that align the climate forcing in the attribution analy­
sis with the forcing at the time of the event. Efforts to develop and 
deploy “operational” attribution systems [e.g., (27)] that update ob­
servations and simulations in real time will also help to address this 
limitation.

Last, the verification results have general implications beyond ex­
treme event attribution. Historical climate observations are widely 
used as the basis for risk management decisions in areas as diverse 
as land use, infrastructure, water resources, supply chain manage­
ment, disaster relief, finance, insurance, and liability. In many of these 
cases, decisions must be robust to both current and future probabil­
ities of extreme events. Although decision-makers have been aware 
of the challenges posed by climate nonstationarity for a number of 
years [e.g., (50, 51)], many of these decisions still rely primarily on 
historical observations for calculating extreme event probability [e.g., 
(52)]. The methods for calculating those probabilities from his­
torical data are closely linked to the methods used in the attribu­

tion framework evaluated here (4, 5). The out-of-sample verification 
results presented in this study thus highlight the importance of in­
corporating present and future nonstationarity into the extreme event 
probability quantification that underlies a broad suite of climate-
sensitive risk management decisions.

MATERIALS AND METHODS
Data
The analysis uses data from the CLIMDEX project, which has archived 
observational and climate model values for multiple extreme climate 
indices (49). The observational values are calculated from station ob­
servations and gridded to a global grid, based on data continuity 
criteria. The climate model values are calculated from the CMIP5 
climate model experiments (48).

The current study uses the observational data, along with the 
Historical and Natural climate model simulations. The Historical 
simulations include both natural forcings (such as volcanic aerosols 
and variations in solar output) and anthropogenic forcings (such as 
greenhouse gases and aerosols); the Natural simulations include only 
the natural forcings. The Historical and Natural simulations were 
run through the year 2005 (48). Comparison of the Historical and 
Natural simulations thus quantifies the influence of anthropogenic 
forcings during the historical climate period through 2005.

Attribution metrics
This study evaluates the extreme event attribution analyses that were 
published by Diffenbaugh et al. (5). The study focuses on three of 
the CLIMDEX indices included in that analysis, which together mea­
sure hot, wet, and dry events: the hottest day of the year (TXx; “hot­
test day”), the percentage of annual precipitation falling in days that 
are wetter than the 95th percentile of the 1961–1990 period (R95p; 
“wettest days”), and the longest consecutive dry spell of the year (CDD; 
“longest dry spell”).

Diffenbaugh et al. (5) calculated the attribution ratio described 
in (4), using the CMIP5 Historical and Natural simulations over the 
1961–2005 period. This attribution ratio (ARForcing:1961–2005) quan­
tifies the influence of anthropogenic forcing on the probability of 
exceeding the most extreme value observed at each grid point during 
the 1961–2005 period. The metric is calculated as the ratio between 
the return interval of the observed record value in the lower level of 
forcing (RINAT:1961–2005) and the return interval of the observed re­
cord value in the higher level of forcing (RIHIST:1961–2005). For ex­
ample, if the most extreme observed value has a return interval of 
100 years in the Natural forcing (probability = 0.01) and a return 
interval of 50 years in the Historical forcing (probability = 0.02), 
then the attribution ratio (ARForcing:1961–2005) is 2, suggesting that 
anthropogenic forcing has doubled the probability of exceeding the 
most extreme observed value.

Diffenbaugh et al. (4) also calculated the contribution of the histori­
cal trend at each grid point to the probability of exceeding that grid 
point’s most extreme observed value. This metric (ARObs-dt:1961–2005) 
is calculated as the ratio of the return interval of the observed record 
value in the detrended historical time series (RIObs-dt:1961–2005) and 
the return interval of the observed record value in the actual histori­
cal time series (RIObs:1961–2005)

	​​ AR​ Obs‐dt:1961−2005​​  =  (​RI​ Obs‐dt:1961−2005​​ ) ÷ (​RI​ Obs:1961−2005​​)​	
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This second metric (ARObs-dt:1961–2005) thus relies only on obser­
vational data (without any climate model simulations) and is agnostic 
about the cause of the historical trend.

The current study evaluates both the attribution ratio due to an­
thropogenic forcing (ARForcing:1961–2005) and the attribution ratio 
due to the observed trend (ARObs-dt:1961–2005). Both attribution 
metrics report an uncertainty distribution of attribution ratios. These 
distributions are based on the uncertainty distribution of return 
intervals for the record setting event (RIObs:1961–2005), which are cal­
culated from the observational time series using a block bootstrap­
ping approach.

Verification framework
To verify the previously published attribution ratios, the uncer­
tainty distributions calculated for 1961–2005 are compared with the 
frequency of occurrence of record-setting events observed during 
2006–2017. This verification approach is conceptually similar to the 
attribution calculation of Coumou et al. (28), except here the verifi­
cation data are kept out of sample (i.e., the verification data are not 
used in the calculation of the counterfactual time series from which 
the counterfactual probabilities are quantified).

First, the maximum value of each climate index is calculated at 
each grid point during the 1961–2005 period of the CLIMDEX ob­
servations. Then, for each grid point, all events during 2006–2017 that 
exceed the respective 1961–2005 grid-point maximum are identified. 
The frequency of occurrence of record-setting events in 2006–2017 
(FObs:2006–2017) is then calculated over the Northern Hemisphere, the 
United States (30–50°N, 120–60°W), Europe (30–60°N, 0–50°E), and 
East Asia (20–45°N, 90–135°E), where

​​

​F​ Obs:2006−2017​​ =

​  
    [the total number of exceedances in the region in 2006‐2017 ] ÷

​     [(the number of grid points in the region ) ×​    

(the number of years in 2006‐2017 ) ]

  ​​	

This regional frequency of occurrence (FObs:2006–2017) is then con­
verted to a regional verification ratio (VRObs:2006–2017) that can be 
compared with the attribution ratios described in (5) and (4). First, 
the regional frequency of occurrence is converted to a “regional re­
turn interval” (RIObs:2006–2017) using the formula for the return interval

	​ RI  =  1 ÷ (1 – P)​	

but using the regional frequency of occurrence (FObs:2006–2017) as the 
measure of probability

	​​ RI​ Obs:2006−2017​​  =  1 ÷ (​F​ Obs:2006−2017​​)​	

The regional-mean return interval of the observed record value 
in the detrended historical time series (RIObs-dt:1961–2005) is then com­
puted by first calculating the mean of the grid-point probabilities in 
the detrended time series (PObs-dt:1961–2005[i,j]) and then calculating 
the regional-mean return interval from that regional-mean proba­
bility. (Note that the order of operations matters: It is important to 
first calculate the regional-mean of the grid-point probabilities to 
avoid the regional-mean return interval being dominated by any sin­
gle grid-point return interval value.) The uncertainty in the regional-
mean return interval (RIObs-dt:1961–2005) is quantified by calculating 

the regional-mean at each quantile of the uncertainty distribution of 
grid-point probabilities (PObs-dt:1961–2005[i,j]).

Last, the uncertainty distribution of regional-mean return intervals 
in the detrended 1961–2005 time series (RIObs-dt:1961–2005) is divided 
by the regional-mean 2006–2017 return interval (RIObs:2006–2017), gen­
erating an uncertainty distribution of verification ratios (VRObs:2006–2017) 
for each region

	​​ VR​ Obs:2006−2017​​  = ​ RI​ Obs‐dt:1961−2005​​ ÷ ​RI​ Obs:2006−2017​​​	

This distribution of verification ratios (VRObs:2006–2017) is com­
pared with the regional-means of the grid-point distributions of at­
tribution ratios from anthropogenic forcing (ARForcing:1961–2005) and 
attribution ratios from the observed trend (ARObs-dt:1961–2005).

To understand the comparisons between the published attribu­
tion ratios and the regional verification ratios, a number of regional 
extreme event frequencies are calculated using the IPCC’s base­
line period (1986–2005). These include the regional frequency of 
events that exceed the observed 1961–2005 maximum during the 
1986–2005 period of the observations (FObs:1986–2005), the regional 
frequency of events that exceed the simulated 1961–2005 maximum 
during the 1986–2005 period of the CMIP5 Historical simulations 
(FCMIP5:1986–2005), and the regional frequency of events that exceed 
the simulated 1961–2005 maximum during the 2006–2017 period 
of the CMIP5 RCP8.5 simulations (FCMIP5:2006–2017). For each observed 
or simulated climate realization, the regional frequency is calculated 
as the number of times during the evaluation period (1986–2005 
or 2006–2017) that a grid-point value within the region exceeds the 
respective 1961–2005 grid-point maximum, divided by the number 
of grid points in the region, divided by the number of years in the 
evaluation period.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/12/eaay2368/DC1
Table S1. Verification metrics for the hottest day of the year (TXx), calculated for different time 
periods.
Table S2. Verification metrics for the percent of precipitation from wettest days (R95p), 
calculated for different time periods.
Table S3. Verification metrics for the longest dry spell of the year (CDD), calculated for different 
time periods.
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